Search results for "Metrization theorem"

showing 6 items of 6 documents

On Certain Metrizable Locally Convex Spaces

1986

Publisher Summary This chapter discusses on certain metrizable locally convex spaces. The linear spaces used are defined over the field IK of real or complex numbers. The word "space" will mean "Hausdorff locally convex space". This chapter presents a proposition which states if U be a neighborhood of the origin in a space E. If A is a barrel in E which is not a neighborhood of the origin and F is a closed subspace of finite codimension in E’ [σ(E’,E)], then U° ∩ F does not contain A° ∩ F. Suppose that U° ∩ F contain A° ∩ F. Then A° ∩ F is equicontinuous hence W is also equicontinuous. Since W° is contained in A, it follows that A is a neighborhood of the origin, a contradiction.

CombinatoricsLocally convex topological vector spaceMetrization theoremConvex setHausdorff spaceMathematics::General TopologyField (mathematics)CodimensionSpace (mathematics)EquicontinuityMathematics
researchProduct

When a convergence of filters is measure-theoretic

2022

Abstract Convergence almost everywhere cannot be induced by a topology, and if measure is finite, it coincides with almost uniform convergence and is finer than convergence in measure, which is induced by a metrizable topology. Measures are assumed to be finite. It is proved that convergence in measure is the Urysohn modification of convergence almost everywhere, which is pseudotopological. Extensions of these convergences from sequences to arbitrary filters are discussed, and a concept of measure-theoretic convergence is introduced. A natural extension of convergence almost everywhere is neither measure-theoretic, nor finer than a natural extension of convergence in measure. A straightforw…

Convergence in measureMetrization theoremUniform convergenceConvergence (routing)Applied mathematicsAlmost everywhereTopology (electrical circuits)Geometry and TopologyExtension (predicate logic)Measure (mathematics)MathematicsTopology and its Applications
researchProduct

On Weakly Locally Uniformly Rotund Banach Spaces

1999

Abstract We show that every normed space E with a weakly locally uniformly rotund norm has an equivalent locally uniformly rotund norm. After obtaining a σ -discrete network of the unit sphere S E for the weak topology we deduce that the space E must have a countable cover by sets of small local diameter, which in turn implies the renorming conclusion. This solves a question posed by Deville, Godefroy, Haydon, and Zizler. For a weakly uniformly rotund norm we prove that the unit sphere is always metrizable for the weak topology despite the fact that it may not have the Kadec property. Moreover, Banach spaces having a countable cover by sets of small local diameter coincide with the descript…

Discrete mathematicsUnit sphereMathematics::Functional AnalysisPure mathematicslocally uniformly rotundBanach spacedescriptive Banach spacesUniformly convex spaceweakly locally uniformly rotundNorm (mathematics)Metrization theoremCountable setrenormingAnalysisMathematicsNormed vector spaceJournal of Functional Analysis
researchProduct

Homogeneous Suslinian Continua

2011

AbstractA continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum X has the property that the set of points at which X is connected im kleinen is dense in X. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.

Set (abstract data type)symbols.namesakePure mathematicsProperty (philosophy)Continuum (topology)General MathematicsMetrization theoremMetric (mathematics)symbolsHausdorff spaceJordan curve theoremSeparable spaceMathematicsCanadian Mathematical Bulletin
researchProduct

Generalized Metric Spaces and Locally Uniformly Rotund Renormings

2009

A class of generalized metric spaces is a class of spaces defined by a property shared by all metric αspaces which is close to metrizability in some sense [Gru84]. The s-spaces are defined by replacing the base by network in the Bing-Nagata-Smirnov metrization theorem; i.e. a topological space is a αspace if it has a αdiscrete network. Here we shall deal with a further re- finement replacing discrete by isolated or slicely isolated. Indeed we will see that the identity map from a subset A of a normed space is A of a normedslicely continuous if, and only if, the weak topology relative to A has a s-slicely isolated network. If A is also a radial set then we have that the identity map Id : (X,…

Unit sphereMetric spacePure mathematicsMetrization theoremNorm (mathematics)Banach spaceIdentity functionTopological spaceTopologyMathematicsNormed vector space
researchProduct

Topics in calculus and geometry on metric spaces

2022

In this thesis we present an overview of some important known facts related to topology, geometry and calculus on metric spaces. We discuss the well known problem of the existence of a lipschitz equivalent metric to a given quasiultrametric, revisiting known results and counterexamples and providing some new theorems, in an unified approach. Also, in the general setting of a quasi-metric doubling space, suitable partition of unity lemmas allows us to obtain, in step two Carnot groups, the well known Whitney’s extension theorem for a given real function of class C^m defined on a closed subset of the whole space: this result relies on relevant properties of the symmetrized Taylor’s polynomial…

quasi-ultrametric spacecalculuCarnot groupconvexityLipschitz functionmetric spaceWhitney type extension theoremextension theoremdoubling spacepartitionSettore MAT/05 - Analisi Matematicasemi-distance distancepaces of homogeneous typequasi-metric spacesmetrization theoremof unity lemma
researchProduct